Ricerca Cerca tutti

Cooling System for Lithium Ion Battery

ClassificazioneNotizie sul settore 315 0

Cooling System for Lithium Ion Battery

Contattateci oggi stesso per la soluzione di controllo della temperatura perfetta

 

In recent years, the development of electric vehicles has accelerated significantly due to increasing concerns about fossil fuel consumption and tailpipe carbon emissions. Lithium-ion batteries are currently the most widely used power source for electric vehicles due to their high energy density, low self-discharge rate, low maintenance requirements, long cycle life, light weight, and compact structure. However, the performance of lithium-ion batteries is greatly affected by operating temperature. The ideal operating temperature range of lithium-ion batteries is 25 ~ 40℃, and the maximum temperature difference between different batteries is less than 5℃. Working in low or high temperature environments will lead to reduced battery performance, shortened life, and even thermal runaway. Therefore, an excellent battery thermal management system (BTMS) is very necessary to ensure the safe and efficient operation of lithium-ion batteries.

 

Cooling System for Lithium Ion Battery

 

According to different cooling strategies, BTMS can be divided into passive cooling systems, active cooling systems and hybrid systems that combine passive and active cooling. In passive cooling systems, there is no additional power consumption, but they also cannot control the cooling system to change the cooling rate. Special materials or heat dissipation structures are implemented on the surface of lithium-ion batteries to achieve high heat transfer capabilities between the battery and the external environment. Typical examples include natural air convection, phase change materials (PCM) and heat pipes.

Passive air cooling has very low cooling capacity and is not suitable for cooling high energy density lithium-ion batteries. PCM can store and release a large amount of energy during the thawing process, and has received increasing attention in recent years. The main advantages of incorporating PCM into BTMS are the possibility of achieving good cell temperature uniformity and flexible geometry. However, the low thermal conductivity of PCM hinders the heat dissipation rate of the battery, posing serious hidden dangers under high-rate charging and discharging conditions. Therefore, it is very important to develop a battery thermal management system for new energy electric vehicles with excellent heat dissipation performance.

 

richiesta

E-mail: info@lneya.com    ID WeChat: +8615251628237    WhatsApp: +86 17851209193

 

Le informazioni sul copyright appartengono a lneya-online.com, si prega di contattare l'e-mail per i dettagli: lilia@lneya.com

Oppure scansionate il codice QR di WhatsApp o WeChat qui sotto per contattarci. 

WhatsAPP WeChat

scansione

Precedente: Il prossimo:
Ultime notizie
Richiesta di preventivo
Nome
Indirizzo e-mail
Telefono
Azienda
Messaggio

购物车

X

我的足迹

X
parole chiave: parole chiaveGioia in bottiglia refrigeratore d'acqua