Liquid Cooling of ESS Container
完璧な温度制御ソリューションについては、今すぐお問い合わせください。
Currently, temperature control technologies in the energy storage field mainly include air cooling and liquid cooling. Air cooling technology is extended from air conditioners, while liquid cooling technology is borrowed from electric vehicles. Air-cooling heat dissipation uses a fan to bring the heat generated by the battery core to the outside, and liquid cooling heat dissipation uses coolant convection heat transfer to accurately manage the temperature of each battery core. Air-cooling technology was first commonly used in energy storage systems because the technology has a simple structure, mature technology, and low cost, and can achieve rapid delivery and deployment. However, the air-cooling system is large in size and is greatly affected by the external environment. It has problems in terms of system safety, efficiency, and economy. There are many problems in terms of performance, and the emergence of liquid-cooled energy storage just solves the above problems.
1. Principle of energy storage system (ESS) container liquid cooling system
Liquid cooling systems are currently a popular research direction in power battery thermal management. They utilize the coolant’s large heat capacity and ability to take away excess heat from the battery system through circulation to achieve optimal operating temperature conditions for the battery pack. The basic components of the liquid cooling system include: liquid cooling plate, liquid cooling unit (heater optional), liquid cooling pipeline (including temperature sensor, valve), high and low voltage wiring harness; coolant (ethylene glycol aqueous solution), etc.
The cooling circuit of battery packs generally uses a parallel circuit to reduce the temperature difference between battery packs; battery packs generally use large battery boxes (30-50KWh/Pack) to improve system integration and reduce costs; the liquid cooling unit is arranged Both distributed and centralized. The distributed type uses one cluster or two clusters to configure one liquid cooling unit, which is generally used for a single outdoor cabinet; the centralized type uses a container system to configure one or two liquid cooling units.
2. Main advantages of energy storage liquid cooling system
(1) Safer. As the scale of energy storage project construction continues to increase, the battery cell capacity and system energy density are also increasing. Even if large-capacity batteries are used, it still takes more than a dozen to build a 100-megawatt energy storage project. Thousands or even hundreds of thousands of battery cells are combined together, which will generate greater heat and place higher requirements on the temperature control management of the energy storage system. Liquid-cooled energy storage has high technical content. It directly dissipates heat to the battery core through coolant convection. The method is controllable and is not affected by external conditions. It also has high heat dissipation efficiency and more precise temperature control. Due to factors such as small air specific heat capacity and convection heat transfer coefficient, battery air-cooling technology has low heat transfer efficiency, and the battery heat generation increases, which will cause the battery temperature to be too high, and there is a risk of thermal runaway; the liquid cooling solution can rely on a large flow of cooling medium To force the battery pack to dissipate heat and realize heat redistribution between battery modules, it can quickly inhibit the continued deterioration of thermal runaway and reduce the risk of runaway.
(2) More economical. In addition to safety, the integrated design of energy storage systems also takes into account the operation and maintenance of the entire life cycle. Liquid-cooled energy storage systems are more economical. The energy storage system generates a lot of heat during operation and dissipates heat unevenly, which not only endangers the safety of the battery energy storage system, but also affects the battery life. Through cluster-level controllers and intelligent temperature control and balancing control technology, the energy storage liquid cooling system can make the temperature of the battery core more uniform through the settings of pipelines and liquid flow. To achieve the same average battery temperature, air cooling requires 2-3 times higher energy consumption than liquid cooling. The maximum temperature of the battery pack under the same power consumption is 3-5°C higher with air cooling than with liquid cooling, and liquid cooling has lower power consumption.
(3) More suitable for long-term energy storage. From 2021 to now, various policies related to energy storage ratios have been introduced across the country, which involve two indicators, one is the power ratio, and the other is the energy storage duration. The power proportion ranges from 5% to 30%, and the energy storage time ranges from 1h to 4h. If the 4h battery energy storage system continues to use air-cooled heat dissipation technology, although its structure is simple and the cost is low, the heat generated by the battery core is directly brought to the outside through the fan, but it has low heat transfer coefficient, slow cooling speed, and requires a large area. The heat dissipation channel and other disadvantages, its area will be very huge. Liquid cooling technology has the advantages of high thermal conductivity, more uniform heat dissipation, lower energy consumption, and less floor space. The liquid-cooled energy storage system container solution has high heat dissipation efficiency. Compared with traditional air-cooled containers, the power density is increased by 100%. , saving more than 40% of the floor space, and is more suitable for large-scale and long-term energy storage scenario applications.
Eメール info@lneya.com WeChat ID: +8615251628237 WhatsApp: +86 17851209193
精密冷凍機/小型冷凍機
(カスタムデザイン)
チラーは様々な産業や研究所で広く使用することができ、カスタマイズされた設計をサポートしています。
温度範囲 | -18°C ~ +30°C | +5°C ~ +35°Cシリーズ |
冷却能力 | 0.35 ~ 0.9kW | 1.8~50kW |
循環式チラー
(カスタムデザイン)
私達の再循環のスリラーは低温冷凍の技術を採用し、温度は- 120℃と低く、さまざまな付属品はカスタマイズ可能です。
温度範囲 | -25°C ~ +30°Cシリーズ | -45°C ~ +30°Cシリーズ | -60°C ~ -20°Cシリーズ | -80°C ~ -20°Cシリーズ | -120°C ~ -70°Cシリーズ |
冷却能力 | 0.8 ~ 30kW | 0.75 ~ 12kW | 0.4 ~ 6kW | 0.2 ~ 6kW | 0.3 ~ 5kW |
低温チラー
(カスタムデザイン)
当社は、-150℃の温度制御範囲を持つ低温冷凍機の生産を専門としており、さまざまな業界の冷凍ニーズを満たすことができます。
温度範囲 | -25°C ~ -5°Cシリーズ | -45°C ~ -10°Cシリーズ | -60°C ~ -10°Cシリーズ | -80°C ~ -30°Cシリーズ | -110°C ~ -50°Cシリーズ | -150℃〜-110℃シリーズ |
冷却能力 | 12~360kW | 6~180kW | 6~180kW | 4〜180kW | 2~120kW | 2.5 ~ 11kW |
(カスタムデザイン)
車両品質テスト用温度シミュレーション:バッテリー寿命テスト、燃料噴射装置/モーターテストベンチ、エアバッグテスト、コンポーネントテストベンチなど。
(カスタムデザイン)
電子部品の精密な温度制御に適しています。過酷な環境に対応する半導体電子部品の製造では、ICパッケージの組み立てやエンジニアリング、製造テストの段階で、電子温度テストやその他の環境テストシミュレーションが行われます。
バッテリーエネルギー貯蔵システム用液体冷却
(カスタムデザイン)
種類 | コンバーティング・ステーション用 | 蓄電池用 | 充電ステーション用 |
冷却能力 | 45kW | 5 ~ 8.5kW | 4kW |
ZLFQシリーズ
(カスタムデザイン)
クーラント分配ユニット
液冷装置は、半導体試験、電子機器恒温試験、サーバー支持インフラ冷却、その他の流体温度制御場所に適しています。
温度範囲 | +5°C ~ +35°C | +5°C ~ +35°C |
冷却能力 | 15~150kW | 200~500kW |
MDサーマルチャックシリーズ
(カスタムデザイン)
RFデバイスや高密度パワーデバイス(IGBTやMOSFET)のテストに使用され、実験用フラットパネル(プラズマ、生物学的製品、バッテリー)などの急速冷却にも使用できる。
温度範囲 | -75°C ~ +225°C |
温度精度 | ±0.1℃ |
スクリュー冷凍機 (カスタムデザイン)
低温スクリュー冷凍機と常温スクリュー冷凍機
温度範囲 | +5°C ~ +30°C | +5°C ~ +30°C | +5°C ~ +30°C | +5°C ~ +30°C | -25°C ~ +5°C | -25°C ~ +5°C |
冷却能力 | 107~1027kW(シングルコンプレッサー) | 299~2134kW(デュアルコンプレッサー) | 98~934kW(シングルコンプレッサー) | 272~1940kW(デュアルコンプレッサー) | 48~467kW(シングルコンプレッサー) | 51~497kW(シングルコンプレッサー) |