Heating and Cooling Temperature Controller
완벽한 온도 제어 솔루션을 위해 지금 바로 문의하세요.
Heating and cooling temperature controller is a device that can realize refrigeration, heating and temperature control functions at the same time. It usually consists of a refrigeration cycle system, a heating system and a control part.
Principle of heating and cooling temperature controller
The principle is mainly based on the law of thermodynamics, that is, heat will not transfer from low-temperature objects to high-temperature objects by itself, but will transfer from high-temperature objects to low-temperature objects. The system transfers heat from low-temperature objects to high-temperature objects through the synergistic effect of compressors, condensers, expansion valves, evaporators and other components, thereby achieving cooling and heating effects. At the same time, precise control of temperature can be achieved by controlling the operation of the compressor refrigeration cycle system and heating system.
Structure of heating and cooling temperature controller
Heating and cooling temperature controller is mainly composed of refrigeration cycle system, heating system and control part.
Refrigeration cycle system: It is mainly composed of compressor, condenser, expansion valve and evaporator. The compressor compresses low-temperature and low-pressure gas into high-temperature and high-pressure gas, thereby providing sufficient energy for cooling and heating. The condenser is used to cool the high-temperature and high-pressure gas compressed by the compressor into a liquid. The expansion valve controls the pressure and flow of the liquid, while the evaporator is used to absorb heat and transfer it to the object to be cooled.
Heating system: Mainly composed of electric heaters, heat exchangers, etc. Electric heaters convert electrical energy into thermal energy and transfer the heat to the object to be heated through a heat exchanger.
Control part: mainly composed of temperature sensors, controllers, actuators, etc. The temperature sensor detects the temperature of the system. The controller outputs a control signal to the actuator based on the comparison between the set temperature and the actual temperature. The actuator controls the operation of the compressor refrigeration cycle system and heating system to achieve precise temperature control.
Characteristics of heating and cooling temperature controller
Powerful functions: The system can realize cooling, heating and temperature control functions to meet different scenarios and needs.
High efficiency and energy saving: The system adopts advanced thermodynamic principles, which can effectively utilize energy and achieve high efficiency and energy saving.
Easy operation: The operation of the system is simple and convenient. You only need to press the corresponding button to realize function conversion and temperature control.
Wide scope of application: The system can be applied to a variety of different occasions, such as commercial refrigeration, refrigeration, air conditioning and other fields, and can also be used for heating and cooling in industrial production processes.
Convenient maintenance: The maintenance of the system is convenient and simple, and only regular inspection and maintenance are required to ensure the normal operation of the equipment.
Application scenarios of heating and cooling temperature controller
Commercial refrigeration equipment: Commercial refrigeration, refrigeration, air conditioning and other fields are one of the main application areas. Commercial refrigeration equipment requires frequent cooling and heating operations and consumes a large amount of energy, and the refrigeration and heating temperature control system just meets this demand.
Industrial production: Various heating and refrigeration equipment are needed in the industrial production process, and the refrigeration and heating temperature control system can just meet this demand. The use of refrigeration and heating temperature control systems in industrial production processes can effectively improve production efficiency and reduce energy consumption.
Scientific research experiments: In scientific research experiments, experimental operations such as temperature control and precise temperature adjustment are often required, and the refrigeration and heating temperature control system can achieve precise temperature control and adjustment to meet the needs of experiments.
Home refrigeration: In the home, the refrigeration, heating and temperature control system can also play a big role. Especially in high-temperature weather in summer, families need to perform frequent refrigeration operations, and the use of refrigeration and heating temperature control systems can achieve efficient and energy-saving refrigeration effects.
Future development trends of heating and cooling temperature controllers
With the improvement of environmental awareness and the restriction of energy consumption, the future development trend will be towards a more efficient, energy-saving, environmentally friendly and sustainable direction. At the same time, with the continuous advancement and innovation of science and technology, the application fields will be more extensive in the future, and the technology will be more mature and advanced. For example, with the development of artificial intelligence technology, artificial intelligence technology may be introduced into refrigeration and heating temperature control systems in the future to achieve intelligent control and management, improve equipment operating efficiency and reduce energy consumption. At the same time, with the continuous development of new energy technologies, future refrigeration and heating temperature control systems may use new energy technologies, such as solar energy and wind energy, to achieve more environmentally friendly and sustainable operations. In short, future development will continue to develop in the direction of intelligence, efficiency and environmental protection, providing better services and more advanced technical support for applications in different fields.
Product introduction of heating and cooling temperature controller:
1. 7-inch LCD touch screen, Chinese display, easy to operate and intuitive to display.
2. The control system, designed by Siemens PLC, can accurately control and display the temperature in real time, and draw trend curves.
3. Oil temperature control, temperature difference control, switchable control.
4. Measurement data can be saved in Excel format, making browsing, editing and sending easier.
5. The equipment operating status is displayed in real time and fault information is automatically diagnosed, making maintenance and use more intuitive and convenient.
6. Configure RS485 communication interface and standard Modbus RTU protocol.
7. Compact design, beautiful and elegant, saving space.
8. Customized solutions can be provided according to different application requirements.
이메일: info@lneya.com WeChat ID: +8615251628237 WhatsApp: +86 17851209193
냉난방 시스템(SUNDI 시리즈)
(맞춤형 디자인)
온도 제어 범위: -120°C ~ +350°C
Application: Various Reactors (Microchannels, Glass, Jacketed Reactors, etc.), Distillation or Extraction System, Laboratory, University, Research Institute, Aerospace, Automotive Industry, Semiconductor and Electrical Test, Chemical, Pharmaceutical, Petrochemical, Biochemical, Medical, Hospital, R&D Workshop, Aerospace, Biological and Other Industries.
온도 범위 | -10 ~ +150°C 시리즈 | -25 ~ +200°C 시리즈 | -25 ~ +300°C 시리즈 | -45 ~ +250°C 시리즈 | -45 ~ +300°C 시리즈 | -60 ~ +250°C 시리즈 | -60 ~ +300°C 시리즈 | -70 ~ +250°C 시리즈 | -80 ~ +250°C 시리즈 | -90 ~ +250°C 시리즈 | -100 ~ +100°C 시리즈 | -25 ~ +200°C, 원자로 두 대용 장비 한 대 | -40 ~ +200°C, 원자로 두 대용 장비 한 대 |
냉각 용량 | 1.5 ~ 15kW | 1~200kW | 1~200kW | 0.45 ~ 200kW | 0.9 ~ 25kW | 0.25 ~ 60kW | 0.75 ~ 25kW | 0.4 ~ 15kW | 0.3 ~ 80kW | 0.2 ~ 80kW | 0.45 ~ 80kW | 최대 10*2kW | 최대 10*2kW |
참고: -150℃ ~ +350℃의 모든 온도 범위와 모든 냉각 용량을 맞춤 설정할 수 있습니다. |
냉각 및 난방 시스템(WTD 시리즈)
(맞춤형 디자인)
(마이크로 채널/튜브 리액터 전문)
온도 제어 범위: -70°C ~ +300°C
마이크로 채널에 특화된 설계(작은 액체 보유 용량, 강력한 열 교환 용량, 순환 시스템 고압 강하)
온도 범위 | -70°C ~ +300°C | -45°C ~ +250°C | -70°C ~ +200°C | ||||||
냉각 용량 | 1.1 ~ 7.5kW | 1.5 ~ 5.5kW | 11 ~ 50kW | ||||||
참고: -150℃ ~ +350℃의 모든 온도 범위와 모든 냉각 용량을 맞춤 설정할 수 있습니다. |
냉각 및 난방 서큘레이터
(맞춤형 디자인)
온도 제어 범위: -45°C ~ +250°C
Application: Various Reactors (Microchannels, Glass, Jacketed Reactors, etc.), Distillation or Extraction System, Laboratory, University, Research Institute, Aerospace, Chemical, Pharmaceutical, Petrochemical, Biochemical, Medical, Hospital, R&D Workshop, Aerospace, Biological and Other Industries.
온도 범위 | -25°C ~ +200°C 시리즈 | -45°C ~ +250°C 시리즈 | |||||||
냉각 용량 | 1 ~ 15kW | 0.25 ~ 15kW | |||||||
참고: -150℃ ~ +350℃의 모든 온도 범위와 모든 냉각 용량을 맞춤 설정할 수 있습니다. |
난방 서큘레이터
(맞춤형 디자인)
온도 제어 범위: +50°C ~ +300°C
참고: UC 시리즈는 열전달 매체의 온도를 제어할 수 있습니다. UST 시리즈는 열 전달 매체의 온도를 제어할 수 있을 뿐만 아니라 반응 물질의 온도도 제어할 수 있습니다.
온도 범위 | +50°C ~ +170°C(UC 시리즈) | +50°C ~ +300°C(UC 시리즈) | +50°C ~ +300°C(UST 시리즈) | ||||||
난방 용량 | 5.5 ~ 15kW | 3.5 ~ 130kW | 3.5 ~ 95kW | ||||||
참고: -150℃ ~ +350℃의 모든 온도 범위와 모든 냉각 용량을 맞춤 설정할 수 있습니다. |
TCU 멀티 리액터 온도 제어 시스템
(맞춤형 디자인)
온도 제어 범위: -120°C ~ +250°C
Application: Various Reactors (Microchannels, Glass, Jacketed Reactors, etc.), Distillation or Extraction System, Laboratory, University, Research Institute, Aerospace, Chemical, Pharmaceutical, Petrochemical, Biochemical, Medical, Hospital, R&D Workshop, Aerospace, Biological and Other Industries.
온도 범위 | -45°C ~ +250°C 시리즈 | -120°C ~ +250°C 시리즈 | 맞춤형 온도 제어 시스템 | RT+10°C ~ +135°C | |||||
난방 용량 | 25 ~ 80kW | 25 ~ 80kW | 사용자 지정 | 25 ~ 300kW | |||||
참고: -150℃ ~ +350℃의 모든 온도 범위와 모든 냉각 용량을 맞춤 설정할 수 있습니다. |